Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(9): 8407-8414, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36910974

RESUMO

Sepsis is the body's response to an infection. Existing diagnostic testing equipment is not available in primary care settings and requires long waiting times. Lateral flow devices (LFDs) could be employed in point-of-care (POC) settings for sepsis detection; however, they currently lack the required sensitivity. Herein, LFDs are constructed using 150-310 nm sized selenium nanoparticles (SeNPs) and are compared to commercial 40 nm gold nanoparticles (AuNPs) for the detection of the sepsis biomarker interleukin-6 (IL-6). Both 310 and 150 nm SeNPs reported a lower limit of detection (LOD) than 40 nm AuNPs (0.1 ng/mL compared to 1 ng/mL), although at the cost of test line visual intensity. This is to our knowledge the first use of larger SeNPs (>100 nm) in LFDs and the first comparison of the effect of the size of SeNPs on assay sensitivity in this context. The results herein demonstrate that large SeNPs are viable alternatives to existing commercial labels, with the potential for higher sensitivity than standard 40 nm AuNPs.

2.
Pharmaceutics ; 14(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36145561

RESUMO

The potential for porous silica to serve as an effective anti-obesity agent has received growing attention in recent years. However, neither the exact pharmacological mechanism nor the fundamental physicochemical properties of porous silica that drive its weight-lowering effect are well understood. Subsequently, in this study, an advanced in vitro digestion model capable of monitoring lipid and carbohydrate digestion was employed to elucidate the effect of porous silica supplementation on digestive enzyme activities. A suite of porous silica samples with contrasting physicochemical properties was investigated, where it was established that the inhibitory action of porous silica on digestive enzyme functionality was strongly dependent on porous nanostructure, particle size and morphology, and surface chemistry. Insights derived from this study validate the capacity of porous silica to impede the digestive processes mediated by pancreatic lipase and α-amylase within the gastrointestinal tract, while the subtle interplay between porous nanostructure and enzyme inhibition indicates that the anti-obesity effect can be optimized through strategic particle design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...